
Contents
1 Introduction 1

2 Setting up a Development Server 2

3 Your own Base Script with Lua, HTML, and Javascript 4
3.1 __resource.lua . 4
3.2 couchdb.lua . 6
3.3 cfg.lua . 11
3.4 auth.lua . 11
3.5 server.lua . 11
3.6 client.lua . 11
3.7 scoreboard.html . 11

References 11

1 Introduction
Hello and welcome to my tutorial for writing your own scripts for FiveM. In this tutorial we
will be starting from setting up a local Artifacts server for FiveM, which will be then later
used to write a base resource script to handle to give you basic database support to handle the
reading andwriting of custom user-data; as well as to give you an idea on how to use theNUI,
which is just a browser overlay over the running GTAV game and use the native functions
provided to modify the game to your liking. I will assume that you are running a Microsoft
Windows system.
The development process for the resource will be shown twice, once using Lua as the base
scripting language and once using C# as the base scripting language, hence the two chapters
in the table of contents.
I expect, that you have already downloaded and installed the FiveM-Client[Col18a], if not, do
that immediately by downloading from https://fivem.net.
Furthermore you need an editor to edit the scripts depending on the main language you
want to use. If you are not experienced with any editors that work with the program-
ming languages, I recommend you using Notepad++ which can be downloaded from https:
//notepad-plus-plus.org or Atom which you can download from https://atom.io. Fur-
thermore if you do not want to write your resources using Lua, but instead C# you will need
to download Visual Studio Community from https://www.visualstudio.com/downloads.
While writing scripts there are several sources you should use as reference material.

Google https://www.google.com, this is self-explanatory.

Native Reference https://runtime.fivem.net/doc/reference.html, this site contains all
native functions with ample explanations making sure you use them correctly, if they
work.

1

https://fivem.net
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://atom.io
https://www.visualstudio.com/downloads
https://www.google.com
https://runtime.fivem.net/doc/reference.html

FiveM docs http://docs.fivem.net, this is probably the best resource you can use, as its
content builds the basis of modifing the game.

FiveM Wiki https://wiki.fivem.net, this Wiki is not really completely up-to-date, but it is
good enough to be used.

GT-MP Wiki https://wiki.gt-mp.net, this Wiki from a competitive modifying solution,
contains an awesome amount of information about game content.

2 Setting up a Development Server
This part of the tutorial just follows the FiveM wiki page about setting up a server[Con17]
with a little bit more detail.
The first step before be able to run the server is to make sure to have an up-to-date redis-
tributable forMicrosoft Visual C++ installed. The best way to make sure you have, is just by in-
stalling it, possibly again. You can get the executeable from the url https://go.microsoft.
com/fwlink/?LinkId=746572.
Now we need the actual server files, which come in two part. The first contains the exe-
cutable files for the server, which can be downloaded from https://runtime.fivem.net/
artifacts/fivem/build_server_windows/master. Please check back at least once amonth
if there is a more up-to-date version of the server files available and update yours. From
there we download the latest version of the Server, which is indicated by the date in the
date column and the number starting the directory, which contains the server.zip file. We
download the server.zip file from the most recent directory.
Once we got this file we unpack it to a directory which will contain the server files, e.g. in
my case, I unpacked the archive to D:\myfxserver. In that directory, if you have success-
fully unpacked it you should have a bunch of .dll files, components.json, FXServer.exe,
run.cmd, and a folder citizen.
For the next part we need a few basic scripts to run the server, which can be deactivated later
if you are sure you do not need them. To download them, you visit https://github.com/
citizenfx/cfx-server-data and click on the green Clone or download button, select then
Download ZIP. Unpack your downloaded zip file also to the same directory as your unpacked
the server.zip, e.g. in my case D:\myfxserver. In that folder you should now find another
folder, called cfx-server-data-master that we will rename to something simpler of your
choice; in my case, I will go with data.
The next step instead of finalizing the setup of the files first, is to get a key to actually run
the server. This key can be obtained from https://keymaster.fivem.net. To use that site
you need to be registered on the FiveM Forums. Once you are logged in on that side, you
hit the blue register link, and fill in the forms. I filled in for the Label Tutorial Server, as IP
Address I put in 127.0.0.1, as I will only use it for tutorials or this tutorial. And of course, the
server type is Home hosted. Now you should have a key displayed for the server in a table,
which are some random letters and numbers.
Finally we need to setup the server configuration file and a shortcut to make it easy to start.
For that, we open Notepad++ and start a new file. The contents will be just copied & pasted

2

http://docs.fivem.net
https://wiki.fivem.net
https://wiki.gt-mp.net
https://go.microsoft.com/fwlink/?LinkId=746572
https://go.microsoft.com/fwlink/?LinkId=746572
https://runtime.fivem.net/artifacts/fivem/build_server_windows/master
https://runtime.fivem.net/artifacts/fivem/build_server_windows/master
https://github.com/citizenfx/cfx-server-data
https://github.com/citizenfx/cfx-server-data
https://keymaster.fivem.net

from https://wiki.fivem.net/wiki/Running_FXServer#server.cfg or from the text be-
low.

1 # you probably don ’ t want to change these !
only change them i f you ’ re us ing a se rve r with mu l t i p l e network i n t e r f a c e s

3 endpoint_add_tcp ” 0 . 0 . 0 . 0 : 3 0 1 2 0 ”
endpoint_add_udp ” 0 . 0 . 0 . 0 : 3 0 1 2 0 ”

5

s t a r t mapmanager
7 s t a r t chat

s t a r t spawnmanager
9 s t a r t sess ionmanager

s t a r t f ivem
11 s t a r t hardcap

s t a r t rcon log
13 s t a r t scoreboard

s t a r t playernames
15

sv_scr ip tHookAl lowed 1
17

change t h i s
19 # rcon_password yay

21 sv_hostname ” Tu t o r i a l Server ”

23 # nested c on f i g s !
exec s e r v e r _ i n t e r n a l . c f g

25

load ing a se rve r i con (96 x96 PNG f i l e)
27 # l o ad_ s e r v e r _ i c on myLogo . png

29 # convars f o r use from s c r i p t
s e t temp_convar ”hey world ! ”

31

d i s a b l e announcing ? c l e a r out the master by uncommenting t h i s
33 # sv_master1 ””

35 # want to only a l low p l aye r s au then t i c a t ed with a th i rd−party prov ider l i k e
Steam?

sv_authMaxVariance 1
37 # sv_authMinTrust 5

39 # add system admins
add_ace group . admin command a l low # a l low a l l commands

41 add_ace group . admin command . qu i t deny # but don ’ t a l l ow qu i t
add_p r i n c i p a l i d e n t i f i e r . steam :110000112345678 group . admin # add the admin to

the group
43

remove the # to hide p l aye r endpoints in ex t e rna l l og output
45 # sv_endpo in tpr i vacy t rue

47 # se rve r s l o t s l im i t (must be between 1 and 31)
sv_maxc l i en t s 30

49

3

https://wiki.fivem.net/wiki/Running_FXServer#server.cfg

l i c e n s e key f o r s e rve r (h t tp s : / / keymaster . f ivem . net)
51 s v _ l i c en s eKey changeme

Here you still need to change the changeme of the sv_licenseKey changeme to the license
key you obtained before. If you have done that save the file in your server data folder with
any name you like, e.g. in my case I saved it in D:\myfxserver\data\ as the suggested
server.cfg.
All that is missing now is a shortcut to start the server easily. Navigate to do this to the
D:\myfxserver folder and right click the file run.cmd and select Create shortcut, move
that to somewhere from where you want to start your server, e.g. in my case the Desktop.
Then rename it to something you want. Now right click the shortcut and select properties.
Currently the line Start in should say something like D:\myfxserver, we just change it to
D:\myfxserver\data. Now all is left before we can start the server is to change the Target to
D:\myfxserver\run.cmd +exec server.cfg, if you named your file server.cfg, the same
as me.

It is now time to start up your server and join the game. You can start the server by double
clicking your shortcut. Start up FiveM, enable Dev mode under Settings. Now click Localhost
which you should have in the top menu to join your Vanilla FiveM Server.
Soon after it will be time for you to write you first own resource/script.

3 Your own Base Script with Lua, HTML, and Javascript
The first script you should always add to a server is the one that builds the foundation of
your server, so it has to be a script that can load and save data, as well as recognize users, so
it allows to recall data based on the user it has stored the data for.
For the databasewewill be using CouchDB, which you probably have to Download from http:
//couchdb.apache.org and install. After you have installed CouchDB you should visit http:
//127.0.0.1:5984/_utils and create an admin account and log in; this is your account to
do administrative work on the CouchDB. Then create a database via a button on the top right,
in my case, I called the database tutorial. Then click on the database.
Create another admin account via http://127.0.0.1:5984/_utilswhich we will use to for
the database interaction. I created another admin called fxserver with the password tutorial.

3.1 __resource.lua

The __resource.lua is very likely the file you usually only write when you start testing your
scripts, but since I know where we will be going, we can start and write this important file
first. You can orient yourself on the example resource manifest from the FiveM wiki found
at https://wiki.fivem.net/wiki/Resource_manifest.
First of we will be creating a new folder in our data\resources folder, which will be the
name of the resource. Before you go wild, you will need to remember, that the name has to
be in all lower case letters, otherwise certain interactions we are going to use will not work.

4

http://couchdb.apache.org
http://couchdb.apache.org
http://127.0.0.1:5984/_utils
http://127.0.0.1:5984/_utils
http://127.0.0.1:5984/_utils
https://wiki.fivem.net/wiki/Resource_manifest

In my case, I named the folder mybase.
We also need to add to the server.cfg the line start mybase at the appropriate position.
So creating all of our files and folders, I got:

• D:\myfxserver\data\resources\mybase

• __resource.lua, the file defining what file is which for the resource handler.

• couchdb.lua, the script file containing all database interaction stuff.

• auth.lua, the script that authenticates players on the server

• server.lua, the script that handles all the server interaction with the clients

• client.lua, the script that handles all the client interaction with the server and a
short interaction with natives.

• cfg.lua, the lua file that just holds all the configuration information for our base
script. Here it is connection information needed for CouchDB and whether the server
is using whitelist mode.

• scoreboard.html, the html file which is overlayed over the entire game screen.

All of these files are empty, and we start writing the __resource.lua. First of all we need to
pick a resource manifest version. which we will put into our file first with

1 r e sou r c e_man i f e s t _ ve r s i on ’ < re source man i fe s t vers ion > ’

The resource manifests versions which are sensible to choose from are [Col18b]:

44febabe-d386-4d18-afbe-5e627f4af937 This one represents active to the latest insight into
the natives/functions from GTAV currently available for FiveM.

05cfa83c-a124-4cfa-a768-c24a5811d8f9 This version lets you register network entities,
also it registers this script as a network script.

Wewill use here the 44febabe-d386-4d18-afbe-5e627f4af937 resourcemanifest version, as
it only is a script with a bit of database and interface interaction.
Nextwe are going to define an ui_page, in the samewaywe added a resource_manifest_version.
The ui_page of course has to be set to scoreboard.html.
To ensure that the ui_page is send to the users we need to reference it again with the iden-
tifier of file or files{} and add it there into the curly brackets.
Now all that is left is to define the scripts and which side of the game has to execute those:
Client or server. As we have only one script for the client, we define it with client_script,
the samewedidwith the resourcemanifests or the ui page, which in our case is justclient.lua.
Next we need to define our scripts executed by the server, to do that we add server_scripts
{} and add all our scripts, namely couchdb.lua, auth.lua, and server.lua, seperated by
colons into the curly brackets.

5

We would be done here now, but we definately want that other resources can interact with
our mybase resource. So we need to define exports {} and server_exports {}. As clients
interact with the servers via events, we will not actually need any exports, but will rather
specify some server events called by a client. On the other hand we will export a few func-
tion on the server side. They will be called getData, setData, doesDataExist, getUserData,
and setUserData.
Beforemoving on let us check if you have done everything right. If you have done everything
right, your __resource.lua should look something like this:

1 r e sou r c e_man i f e s t _ ve r s i on ’ 44 febabe−d386−4d18−afbe−5e627 f 4a f 937 ’

3 ui_page ’ s coreboard .h tml ’
f i l e ’ s coreboard .h tml ’

5

c l i e n t _ s c r i p t ’ c l i e n t . l u a ’
7 s e r v e r _ s c r i p t s {

’ couchdb . lua ’ ,
9 ’ a u t h . l u a ’ ,

’ s e r v e r . l u a ’ ,
11 ’ c f g . l u a ’

}
13

s e rve r _ expo r t s {
15 ’ ge tData ’ ,

’ s e tDa t a ’ ,
17 ’ d o e sDa t aEx i s t s ’ ,

’ ge tUserData ’ ,
19 ’ s e tUserDa ta ’

}

3.2 couchdb.lua

Now it is time to write our first script file, which will handle the connection to CouchDB. We
access CouchDB via simple http requests, like you do with your webbrowser when browsing
on the internet.
Here we will employ chiefly just three methods of doing so: HEAD to return minimal infor-
mation about a document or database, GET to get data from a document, and PUT to put data
into a document.
But first we need to be able to properly dispatch http requests and get a proper result, to
do that we have to write a wrapper for the PerformHttpRequest function that comes with
FiveM lua implementation. For that look at the following address https://wiki.fivem.net/
wiki/PerformHttpRequest and try to write a function that wraps the function neatly and
awaits it finishing up.
To do this remember, that in lua, you can use variables inside a callback function as long
as they count as defined for the function. So you can check if the function has finished by
setting a boolean and waiting for it to turn to a certain state you want it to be. This is what
I ended up with:

6

https://wiki.fivem.net/wiki/PerformHttpRequest
https://wiki.fivem.net/wiki/PerformHttpRequest

f unc t i on HttpRequest (ur l , method , data , headers)
2 l o c a l cbSta tus , cbContent , cbHeaders = 0 , ” ” , { }

i f type (headers) == ’ t a b l e ’ then
4 i f type (data) == ’ t a b l e ’ then

data = j s on . encode (data)
6 end

l o c a l f i n i shedHt tpReque s t = f a l s e
8 PerformHttpRequest (ur l ,

f unc t i on (s t a tu s , content , headers)
10 cbSta tus , cbContent , cbHeaders = s t a tu s , content , headers

f i n i shedHt tpReque s t = t rue
12 end ,

method , data , headers)
14 repea t C i t i z e n .Wa i t (0) u n t i l f i n i shedHt tpReque s t == t rue

end
16 re turn cbSta tus , cbContent , cbHeaders

end

The local variables inside the function can still be set by the callback, so that they can be
returned once they are set. Now that the we can interact via http with websites or with
CouchDB for thatmatter, wewill have to have the ability to send the username and password
to CouchDB, but we will not be using the crude method of sending it via http://username:
password@127.0.0.1:5984/ but by using the Authorization header. For that we need to be
able to base64encode data. For that we pick any of the encoding methods from http://
lua-users.org/wiki/BaseSixtyFour. You should try to understand what is happening in
these methods, but if you don’t it does not really matter. You should just be aware that
nearly all of your problems have been solved already by someone else, and standing on their
shoulders by using their code-snippets will be speeding up your workflow, but you should
always double check their code.
I picked the last method for Lua 5.3 with binary operators.

1 l o c a l bs = { [0] =
’A ’ , ’ B ’ , ’ C ’ , ’D ’ , ’ E ’ , ’ F ’ , ’G ’ , ’H ’ , ’ I ’ , ’ J ’ , ’K ’ , ’ L ’ , ’M ’ , ’N ’ , ’O ’ , ’ P ’ ,

3 ’Q ’ , ’ R ’ , ’ S ’ , ’ T ’ , ’U ’ , ’V ’ , ’W’ , ’X ’ , ’Y ’ , ’ Z ’ , ’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’ , ’ f ’ ,
’ g ’ , ’ h ’ , ’ i ’ , ’ j ’ , ’ k ’ , ’ l ’ , ’m ’ , ’ n ’ , ’ o ’ , ’ p ’ , ’ q ’ , ’ r ’ , ’ s ’ , ’ t ’ , ’ u ’ , ’ v ’ ,

5 ’w ’ , ’ x ’ , ’ y ’ , ’ z ’ , ’ 0 ’ , ’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 6 ’ , ’ 7 ’ , ’ 8 ’ , ’ 9 ’ , ’ + ’ , ’ / ’ ,
}

7

l o c a l f unc t i on base64 (s)
9 l o c a l byte , rep = s t r i n g . b y t e , s t r i n g . r e p

l o c a l pad = 2 − ((# s−1) % 3)
11 s = (s . . r e p (’ \0 ’ , pad)) : gsub (” . . . ” , f unc t i on (cs)

l o c a l a , b , c = byte (cs , 1 , 3)
13 re turn bs [a > >2] . . bs [(a&3) < <4 | b > >4] . . bs [(b&15) < <2 | c > >6] . . bs [c &63]

end)
15 re turn s : sub (1 , # s−pad) . . rep (’ = ’ , pad)

end

7

http://username:password@127.0.0.1:5984/
http://username:password@127.0.0.1:5984/
http://lua-users.org/wiki/BaseSixtyFour
http://lua-users.org/wiki/BaseSixtyFour

Now that we can encode our username and password, we can continue. The first thing we
should do is write three wrappers for the methods we are going to employ to communicate
with CouchDB: HEAD, GET, and PUT. Inside the wrappers for the HttpRequest function we set
the methods, headers, and content if applicable. The headers are as follows:

Accept = "application/json"

Authorization = someauthorizationvariable

Content-Type = "application/json"; this is only for PUT requests.

While GET and PUT can return the entire HttpRequest variables pack, this is definately not
needed for HEAD. As HEAD requests only get very basic information delivered, and can be
used mostly only to check if a document exists. Thus if the status is returned as 200 – which
means everything is ok – we shall return true on a HEAD request and false otherwise. The
code I ended up with looks like this:
f unc t i on CouchDB.Get (u r l)

2 i f not CouchDB . in i t then
repea t C i t i z e n .Wa i t (0) u n t i l CouchDB . in i t == t rue

4 end
headers = { }

6 header s .Accep t = ” a p p l i c a t i o n / j son ”
heade r s . Au tho r i z a t i on = CouchDB.auth

8 re turn HttpRequest (ur l , ”GET” , ” ” , headers)
end

10

f unc t i on CouchDB.Put (ur l , content)
12 i f not CouchDB . in i t then

repea t C i t i z e n .Wa i t (0) u n t i l CouchDB . in i t == t rue
14 end

headers = { }
16 header s .Accep t = ” a p p l i c a t i o n / j son ”

heade r s . Au tho r i z a t i on = CouchDB.auth
18 headers [” Content−Type”] = ” a p p l i c a t i o n / j son ”

re turn HttpRequest (ur l , ”PUT” , content , headers)
20 end

22 f unc t i on CouchDB.Head (u r l)
headers = { }

24 heade r s . Au tho r i z a t i on = CouchDB.auth
header s .Accep t = ” a p p l i c a t i o n / j son ”

26 l o c a l s t a tu s , content , headers = HttpRequest (ur l , ”HEAD” , ” ” , headers)
i f s t a t u s == 200 then

28 re turn true
end

30 re turn f a l s e
end

It furthermore waits until the connection to CouchDB was properly setup, before beginning
to allow queries other than head. Thus we logcally speaking should write the setup of the

8

connection next. For that we first write a simple setup function that just sets the authoriza-
tion variable by base64 encoding a string passed to it, same as the server and the database-
name, which should be stored locally.
Furthermore that function should be automatically called on start of the resource and be
automatically fed the information from the cfg.lua. To do that, in C# we would be using an
EventHandler, but since they are unneccesary in Lua, we just wrap it into a thread for the
server, by using Citizen.CreateThread. Here is what I got:

1 f unc t i on CouchDB.Setup (server , dbname , auth)
CouchDB.auth = ” Ba s i c ” . . b a s e 6 4 (auth)

3 CouchDB.address = s e r v e r . . d bn ame . . ” / ”
i f CouchDB.Head (CouchDB.address) then

5 re turn true
end

7 re turn f a l s e
end

9

C i t i z en . C r e a t eTh r e ad (func t i on ()
11 CouchDB . in i t = CouchDB.Setup (c f g . db s e r v e r , cfg.dbname , c f g . a u t h)

i f CouchDB . in i t then
13 pr i n t (” Connect ion to CouchDB e s t a b l i s h e d . ”)

e l s e
15 pr i n t (” Connect ion to CouchDB f a i l e d . ”)

end
17 end)

All that is left, is to write the functions for our 5 server exports, so external resources can
also access the database in the same way this resource will. For that we will be first needing
to identify a player based on his steamid and license. We ought to take the steamid if it exists,
and if it does not exist, we shall use the license to identify the player internally. For you to
get thatworking, youmight play aroundwith the function GetPlayerIdentifiers(source)
where source is the serverID of a logged in player, or another temporary ID. If you played
around long enoungh and managed to seperate the table, the result can look similar to this:

1 f unc t i on g e t I d e n t i f i e r s (source)
l o c a l steamID64 , ip , l i c e n s e = 0 , ” ” , ” ”

3 f o r k , v in p a i r s (G e t P l a y e r I d e n t i f i e r s (source)) do
i f s t r i n g . s u b (v , 0 , 6) == ’ steam : ’ then

5 steamID64 = tonumber (s t r i n g . s u b (v , 7) , 16)
end

7 i f s t r i n g . s u b (v , 0 , 3) == ’ ip : ’ then
ip = s t r i n g . s u b (v , 4)

9 end
i f s t r i n g . s u b (v , 0 , 8) == ’ l i c e n s e : ’ then

11 l i c e n s e = s t r i n g . s u b (v , 9)
end

13 end
return steamID64 , ip , l i c e n s e

15 end

17 f unc t i on g e t U s e r I d e n t i f i e r (s r c)

9

l o c a l steamID64 , ip , l i c e n s e = g e t I d e n t i f i e r s (s r c)
19 i f steamID64 == 0 then

return l i c e n s e
21 end

return steamID64
23 end

Now that we have the identification cleared, we want to access the user relevant data with
getUserData just by specifying a document type and the source. Like if youwant a character
document of a player, you would maybe ask for char as the document type, whereas the
documentidwill bemaybe something like char<steamid>. Here iswhat I go for our 5 functions,
which concludes our CouchDB connection:

1 f unc t i on getData (documentid)
r e s u l t = { }

3 r e s u l t . s t a t u s , r e s u l t . c o n t e n t , r e s u l t . h e a d e r s = CouchDB.Get (
CouchDB .address . . document id)

r e s u l t . c o n t e n t = j s on . d e code (r e s u l t . c o n t e n t)
5 re turn r e s u l t

end
7

f unc t i on se tDa ta (documentid , documentjson)
9 l o c a l s t a tu s , content , headers = CouchDB.Put (CouchDB.address . .document id ,

documentjson)
i f s t a t u s == 201 then

11 re turn true
end

13 re turn f a l s e
end

15

f unc t i on doe sDa t aEx i s t (documentid)
17 re turn CouchDB.Head (CouchDB .address . . document id)

end
19

f unc t i on getUserData (src , documentpref ix)
21 l o c a l id = g e t U s e r I d e n t i f i e r (s r c)

i f i d ~= ” ” and id ~= n i l then
23 re turn getData (do cumen tp r e f i x . . i d)

e l s e
25 re turn n i l

end
27 end

29 f unc t i on se tUserDa ta (src , documentpref ix , documentjson)
l o c a l id = g e t U s e r I d e n t i f i e r (s r c)

31 i f i d ~= ” ” and id ~= n i l then
return se tDa ta (documentp re f i x . . i d , documentjson)

33 e l s e
re turn f a l s e

35 end

10

end

3.3 cfg.lua

This file will only contain configuration options for other uses who might use the script.
Since we used the variables already in the CouchDB connection, writing this file is straight
forward. Additionallywe are going to add another variablewhich indicates if this is awhitelist-
only server or not.
c f g = { }

2 c f g . d b s e r v e r = ” ht tp : / /127 . 0 . 0 . 1 : 5 984/ ”
cfg.dbname = ” t u t o r i a l ”

4 c f g . a u t h = ” f x s e r v e r : t u t o r i a l ”
c f g . u s e w h i t e l i s t = t rue

And this was already the entire file, now let us continue to the auth.lua, in which the user
authenticates himself automatically with our server.

3.4 auth.lua

In this file we will make sure when the player is connecting to the server, that he has access
to the server, so he is neither banned, nor his ip is banned, and if we use a whitelisting
system, he is whitelisted. Furthermore we are going to add a very simple queue system, so
that once the server is full, users do not need to spam the connection to get access.

3.5 server.lua

3.6 client.lua

3.7 scoreboard.html

References
[Col18a] CitizenFX Collective. FiveM - the GTA V multiplayer modification you have dreamt of.

[Online; accessed 20-January-2018]. 2018. URL: https://fivem.net/.
[Col18b] CitizenFX Collective.Manifest versions :: FiveM Documentation. [Online; accessed 21-

January-2018]. 2018. URL: http : / /docs . fivem . net / resources/ manifest -
versions/.

[Con17] FiveMWiki Contributors. Running FXServer — FiveM. [Online; accessed 20-January-
2018]. 2017. URL: https://wiki.fivem.net/w/index.php?title=Running_
FXServer&oldid=1299.

11

https://fivem.net/
http://docs.fivem.net/resources/manifest-versions/
http://docs.fivem.net/resources/manifest-versions/
https://wiki.fivem.net/w/index.php?title=Running_FXServer&oldid=1299
https://wiki.fivem.net/w/index.php?title=Running_FXServer&oldid=1299

	1 Introduction
	2 Setting up a Development Server
	3 Your own Base Script with Lua, HTML, and Javascript
	3.1 __resource.lua
	3.2 couchdb.lua
	3.3 cfg.lua
	3.4 auth.lua
	3.5 server.lua
	3.6 client.lua
	3.7 scoreboard.html

	References

